第354章:何谓“量子霸权”?(2/2)

谷歌用每8个一组来纠错,准确度也就70~80%左右,也就是逻辑门的保真度了,他必须要这么,实际上纠错组越多就越靠近正确答案,但永远不能保证100%准确,这是个硬伤,当下全世界的量子计算机研究机构,除了叶华解决了退相这个硬伤,没能解决。

至于叶华研制的这台量子计算机是用什么来做量子比特,当然是用量子的某个双态系统了,就是用一个光子的两个自由度来做两个Qubt。

64个量子比特就是64个光子,也就是128个Qubt,并且他们相互纠缠,术语叫做GHZ态,这是一种特殊的量子纠缠。

想要用多量子的GHZ态其实是一件非常困难的时期,叶华用的64个光子,是用这些光子的动量、轨道角动量这两个自由度完成了128个Qubt的GHZ态制备和表征。

实际上许多欧美的物理学家认为用线光学来做量子计算机的道路是走不通的,就是直接用光子的偏振、角动量、轨道角动量这些来做量子比特。

但潘建伟教授的团队率先实现了用光子的偏振、动量和轨道角动量三个自由度完成了GHZ态的制备和表征。

叶华直接完成了两个自由度的GHZ态的制备与表征。

至于为什么说难,难到走不通,是因为太难集成了,做个试验需要一大堆设备来保证光子的相和寿命。

事实上也确实如此。

别墅地下库里,叶华研制的这台量子计算机的体格就极其庞大,其中耗费了很多的设备和资源,就是为了保证光量子的相和寿命问题。

光子是很脆弱的,单个光子碰到哪儿都能被吸收了,所以想要做成千上万个Qubt并实现集成小型化,以现有的技术手段和材料几乎是不可能的。

不能进行集成,也就意味着无法普及民用。

叶华其实有办法来保护光子的相和寿命问题,那就是通过“场”来解决,不过他现在并没有这么做,那会耗费他更多的时间和力去搞新技术的突,新材料的制备等等。

他并没有忘记自己搞这个最初是什么的,仅仅是为了模拟自身的基因阵列,获得完整的基因图谱而实施可控变异而已。

现在有一台量子计算机能用了,就行了,以后的事以后再说。

欧美觉得不行,但是潘建伟教授就另辟蹊径,光子多了不好集成,但是可以用一个光子的多个自由度来做量子比特啊,这就是潘建伟教授的厉害之处。

这并非是叶华最想捣鼓出来的,他只不过是再进一步。

这种方法确实可行,就是代价高了一些,但对于叶华来说,只要做到50~100个,能够运算,造出一台量子计算机就足够了。

……

地址发布邮箱:Ltxsba@gmail.com 发送任意邮件即可!